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This paper presents the results of an analytical investigation of the steady 
translation of a vertical surface-piercing plate a t  a small angle of attack. This 
problem is the antisymmetric equivalent of the symmetric thin-ship problem solved 
by Michell. The linearized boundary-value problem is transformed into an integral 
equation of the first kind by the method of Green functions. The Kelvin-Havelock 
Green function is used to satisfy the linearized free-surface boundary condition and 
radiation condition. A pressure Kutta condition is imposed a t  the trailing edge. 
Effective algorithms are developed to evaluate the hypersingular kernel without 
recourse to  numerical integration. The resulting integral equation is solved by a 
collocation method with a refined scheme of discretization. After establishing the 
convergence of the present algorithm, computations are carried out for a surface- 
piercing rectangular plate of aspect ratio 0.5. The integrated lateral-force and yaw- 
moment coefficients show good agreement with experimental data. Other parameters 
of the flow such as pressure distributions, drag, strength of leading-edge singularity 
and free-surface profiles on the plate are also presented. The incompatibility between 
the pressure Kutta condition and the linearized free-surface condition does not affect 
the global solution. 

1. Introduction 
As in the analogous thin-wing problem, steady potential flow past a surface- 

piercing lifting body at a small angle of attack can be decomposed into two portions : 
a thickness problem and a lifting problem. The former corresponds to the flow past 
a symmetrical body at zero angle of attack. The latter corresponds to the effects of 
camber and angle of attack for a lifting surface of zero thickness. Within the scope 
of the linearized potential theory, the thickness problem can be solved by a suitable 
source distribution on the plane of symmetry, in exactly the same manner as for the 
classical thin-ship theory developed by Michell (1898). However, the solution of the 
corresponding lifting problem which combines the complexity of lifting surfaces and 
ship waves was not well understood. The present work focuses on the lifting problem. 
From a practical point of view, the solution of the lifting problem is essential in 
studying a sailboat on a tack, a thin ship in manoeuvering, a surface-piercing strut 
on a hydrofoil boat, or a demihull of a twin-hull vessel. 

The mathematical difficulties of the lifting problem arise primarily from the 
presence of singularities at edges of a lifting surface and in the kernel of the 
corresponding integral equation. Since the intersection with the free surface is the 
confluence line of the linearized free-surface boundary condition and the body 
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condition, difficulties are anticipated there. However, since the wave effects attenuate 
vertically, a square-root singularity exists a t  the lower edge, similar to  the thin-wing 
problem. From a coordinate transfer, it is clear that the pressure distribution on a 
surface-piercing lifting body with zero thickness has a square-root infinity a t  the 
leading edge, and a removable singularity a t  the trailing edge. Moreover, a finite 
jump of the free-surface elevation across the trailing edge is often observed in 
experiments especially a t  high Froude numbers (see van den Brug, Beukelman & 
Prince 197 1). This discontinuity manifests the strong nonlinearity of the free-surface 
flow in the vicinity of the trailing edge. 

The earlier works on the subject used either an integral equation formulation or a 
slender-body approximation. Newman (1961) used a dipole distribution to represent 
a rectangular surface-piercing strut and derived an integral equation for the dipole 
strength. A similar formulation was adopted by Daoud (1973), but his solution 
scheme suff’ered numerical instability. Kern (1973) studied the design problem also 
using an integral formulation. 

One of the main motivations of studying the lifting problcm is to understand the 
flow in a bow region, e.g. local cavitation and separation. This requires knowledge of 
the spanwise distribution of the parameter associated with the squarc-root 
singularity a t  the leading edge. A local analysis a t  the leading edge based on thc 
assumption that the spanwise distribution of load is elliptical was presented by 
Newman (1973). However, the solution is valid only when free-surface effects are not 
important. 

Studies based on the assumption of small aspect ratio have been reported by 
Hirata (1975) and Chapman (1976). In the study carried out by Chapman, the 
longitudinal coordinate was treated as a time-likc variable, and the steady three- 
dimensional problem was restated in the form of unsteady two-dimensional flow in 
the transverse plane with time advance corresponding to translation of the solution 
plane aft. The resulting problem was solved by a finite-difference scheme which 
discretizes the flow field near the plate into square grids and matches the near-field 
solution with the far-field solution on the outer boundary. Chapman illustrated, 
using the special case of the leading edge, that the vertical velocity component for 
a yawed plate has a square-root singularity a t  the lower edge and a logarithmic 
singularity a t  the intersection with the free surface. He also extended his method to 
satisfy the nonlinear free-surface boundary conditions. In  general, Chapman’s 
slender-body approach is valid for high Froude numbers. Other limitations are (i) the 
effects of transverse waves are completely ignored, (ii) the equally spaced grid mesh 
is not suitable for a solution known to have a square-root singularity a t  the edges of 
the domain, (iii) the validity of the method is not justified in the vicinity of the 
leading edge. The example case analysed by Hirata (1975) using a Fourier transform 
method appears to be equivalent to the linear problcm studied by Chapman. 
However, his calculated free-surface elevation in the region near the bow seems quite 
different from Chapman’s. 

In  the present study, a rectangular plate of zero thickness is selected as the lifting 
model, In spite of its simple geometry, it embodies most of the fundamental features 
associated with the lifting problem. The boundary-integral-equation formulation is 
employed since it has fewer unknowns than volume discretizations. The Kelvin- 
Havelock Green function is used to  satisfy the linearized free-surface condition 
and radiation condition. By applying Green’s theorem, the solution of the linearized 
boundary-value problem is replaced by the boundary integrals on the centreplane 
and its wake. Thus, the problem is reduced to the solution of an integral equation of 
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the first kind subject to a Kutta condition a t  the trailing edge and a cvndition of 
continuous pressure across the wake. 

Since the flow in this linear problem is antisymmetric with respect t o  the 
transverse coordinate, the free-surface elevation alongside the centreplane down- 
stream to the trailing edge may have a finite difference. Even though this appears 
consistent with the observations of the free-surface jump phenomenon behind the 
trailing edge, it is not consistent with the underlying assumptions of linearizing the 
problem: free-surface elevation is continuous and the wave slope is small. In this 
study, the pressure Kutta condition is imposed at the trailing edge. This condition 
togethcr with the condition on the wakc sheet ensures that the free-surface elevation 
is continuous across the wake. However, it is found that in the linearized formulation 
the pressure Kutta condition is not compatible with the linear free-surface condition. 
As a consequence of this, a non-uniformity occurs near the intersection point of the 
trailing edge and the free surface, but it is a local phenomenon. 

In 93, the solution scheme for the integral equation is developed based on a 
collocation method in which the continuous dipole distribution is approximated by 
pitcewise-constant dipole panels. In view of the singularities at the edges, the two- 
dimensional theory introduced by Lan (1974) for thin wings is generalized to 
discrctize the surface-piercing plate. The expansions and algorithms for evaluating 
the derivatives of the Green function are derived based on the efficient expansions of 
thc Green function itself derived by Newman (1986, 1987a, b) .  The convergence of 
the present numerical scheme is established by systematically refining the 
discretizations and comparing results with other known solutions in the limiting case 
of zero Froude number. All major hydrodynamic coefficients of the flow are 
expressed in terms of the dipole density function. The pressure distributions over the 
entire domain of a lifting surface are computed for various Froude numbers. Special 
attention is given to the behaviour of the singularity at the leading edge to study 
the local cross-flow effects. The free-surface profiles on the centreplane of a lifting 
body are also presented. The present results are compared with experimental data by 
van dcn Brug et al. and other theoretical results. The extension of the present 
approach to other geometric forms of a plate is also discussed. 

2. Mathematical formulation 
A vertical rectangular surface-piercing plate of zero thickness, moving with 

constant velocity U and a small angle of attack a, is considered. Cartesian 
coordinates (x, y, z )  are selected with the origin at the intersection of the trailing edge 
and the waterline, the x-axis in the direction of forward motion of the plate, the y- 
axis positive downwards. The plane y = 0 coincides with the undisturbed position of 
the free surface. The geometry of the plate and the coordinate system are shown in 
figure 1. The submerged portion of the lifting surface has a span s and a chord length 
c. No rcstriction on the aspect ratio s/c is made. 

It is assumed that the fluid is inviscid and incompressible, and the flow is 
irrotational except on the lifting surface and its wake. Thus, the perturbation 
velocity potential 4 must satisfy the Laplace equation 

VZ4 = 0 (1) 

in the fluid domain excluding the wake sheet. 
Neither separation nor cavitation are included in this  formulation. Since the angle 

of attack is assumed small, the kinematic and dynamic boundary conditions on the 
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FIGURE 1. The coordinate system. 

free surface may be linearized and combined to be satisfied on the undisturbed free 
surface S,, namely, 

where K = g/V is the wavenumber of a plane progressive wave with the phase speed 
U and g is the gravitational acceleration. If the slope of the camber is uniformly 
small, the kinematic body boundary condition may also be linearized and satisfied 
on the centreplane S, (0 Q x < c;  0 4 y Q s ) .  This condition can be written as 

where f(x, y) is the function of the mean-camber surface. 

fluid is given by 
Neglecting the velocity-squared terms in Bernoulli's equation, the pressure in the 

(4) 

where p is the density of fluid, pa is the pressure on the free surface, and the 
superscripts denote the limiting values as z + 0'. On physical grounds, the pressure 
must be continuous across the wake, i.e. Ap = p + - p -  = 0 on the wake 

a# * 
P * - P ~  = Pc'-+PgY, ax 

s, ( -  co < x < 0 ;  0 Q y < s ) .  

This gives the following condition : 

a 
-(#+-$-) = 0. ax ( 5 )  

For large water depth the velocity must vanish at the bottom. That is 

V$+O as y + w .  (6) 

The boundary-value problem is completed by including a radiation condition which 
specifies that there are only waves downstream of the disturbance, and a Kutta 
condition at  the trailing edge which requires that the velocity remains finite and 
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continuous at  the trailing edge. From the Kutta condition it is deduced that the 
pressure on the two sides of the trailing edge should have the same finite limit. Thus, 
the condition ( 5 )  can be extended to  x = 0. 

From the linearized Bernoulli's equation, the free-surface elevation is given by 

Since the only inhomogeneity is on S,  and the potential function is odd in z ,  ( 5 )  and 
(7)  imply that the free-surface elevation is uniformly zero on the centreplane, except 
on 8, where it changes sign across the plate. Hence, longitudinally the free-surface 
elevation a t  the intersection with the trailing edge may be discontinuous unless it 
happens to be zero. Therefore, at the intersection point of the free surface and trailing 
edge, which is a confluence of the Kutta condition, linearized free-surface condition, 
body condition and wake condition, the conditions of zero pressure difference on the 
trailing edge (pressure Kutta condition) and continuous free-surface elevation are 
not compatible. This is clearly a consequence of linearization. Nevertheless, it is 
plausible that the difficulty a t  the intersection point will not ruin the global solution 
if all conditions are properly satisfied elsewhere. 

The above boundary-value problem can be solved by applying the method of 
Green functions. Defining a field point p = (x ,y ,z)  and a unit singularity point 
q = (<, 7,  c), the Green function corresponding to  the above boundary-value problem, 
which satisfies ( l ) ,  (2), (6) and the radiation condition can be written in the following 
form : 

where r and ro are, respectively, the distances from a field point to the singularity 
point and its-image above the free surface : 

and with the harmonic function H @ ,  q )  represents the effects due to the free surface, 
which satisfies the linear free-surface condition and radiation condition. 

If Green's theorem is applied to the control volume which is bounded by S,, S b ,  8, 
and a far-field closure, it can be shown that the only contributions are from S,  and 
S,, which give the velocity potential $ in the fluid domain as 

where domains S,+ and S; are defined as S, and S, in the limit of z+O+, where 
aG/an = aG/az = -aG/aC. Letting m(C,$-) = $((, $-,O+) -$(&, q,  0-), equation (10) 
expresses the velocity potential in terms of a continuous normal dipole distribution 
over the lifting surface and its wake with the unknown strength m((,$-). 
Differentiating both sides of this equation with respect to 2, and imposing the 
boundary condition (3) on S,, the resulting equation may be written as 
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This is the Fredholm integral equation of the first kind to  be solved for the unknown 
function m(x .  y).  It must be noted that the order of the integration and differentiation 
in ( 1  1) can not be arbitrarily interchanged. Otherwise. it will lead to a mathematically 
ill-defined integral equation. 

From (5). the unknown m ( x , y )  is independent of x on the wake S,, 

m ( x ,  y) = m ( O .  y) for - co < x' < 0;  0 < y < s. (12) 

Thus, the unknowns are confined within the lifting surface S,. Moreover, since the 
potential is continuous outside surfaces AS, and 8,. the potential jump m(x ,  y)  must 
vanish a t  the leading edge and the lower edge of AS,. That is 

m(c,y) = 0 for 0 < y < s ,  

m ( x , s )  = 0 for 0 < x < c.  

However. no similar assumptions can be made on the waterline. 
The Green function is well known in slip-wave theory, and corresponds to the 

velocity potential of a submerged source moving with constant horizontal speed 
beneath the free surface, An cffectivc rcprescntation of this Green function given by 
Sewman (1987a) is selected for its convenience in numerical applications : 

1 1  e ~ @ .  q. 0 ,  k) 
G@,q)  = ---+Re lim- cospdp dk 

r ro [6+o:[12 Jox k-Kcos2p+ic 

f 2  

+4iH(t-x) [n,2 d9sre2 8eu@3qqt9'K], (14) 

where K is the wavenumber as defined in (2) ,  and H ( c - x )  is the unit step function 
which is equal to 1 if ( > x.  0 otherwise. Two auxiliary functions are defined by 

w@, q,p, k) = - k ( y  + 9 )  + iklx-LJ seep+ k ( z -  5)  tanp. 

zi@,q,9) = - (y+~)sec29+i (x ' -~ ) scc9+ i (z -51  sec28sin9. 

where the double integral in (14) represents a symmetrical non-radiating disturbance, 
and the single integral accounts for the wave field downstream. 

In the limits of zero or infinite Froude number, the Green function reduces to 
l / r f  l /ro.  respectively. The corresponding solutions to  the lifting problem are 
equivalent to those for a double-body flow except that in the infinite-Froude-number 
case the image body is a t  a negative angle of attack. 

All of the hydrodynamic coefficients can be expressed in terms of the unknown 
dipole density function m(x,  y). From the linearized Bernoulli's equation (4). the non- 
dimensional pressure coefficient on the lifting surface can be expressed as 

To examine the singularities in the pressure distribution. the simplest way is 
through the following transformation : 

= ;q + cos e) ,  
where 0 < H < R. Hence, 
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where sin 0 = 2x~(c-x)~/c.  From this expression it is clear that the pressure is indeed 
singular a t  both leading and trailing edges. From (5) and (17) it also becomes clear 
that the physical Kutta condition of finite and continuous velocity a t  the trailing 
edgc is equivalent to requiring that the pressure difference across the plate vanishes 
a t  the trailing edge. Therefore, the singularity a t  the trailing edge is removable. 
Using a similar coordinate transfer, it can be shown that the vertical velocity 
component is also singular a t  the waterline and the lower edge. The singularity a t  the 
lower edge is of square-root type, but the singularity a t  the waterline must be 
determined in the light of free-surface effects. 

Assuming that the dipole density m ( 0 , y )  is twice differentiable in 0, thc pressure 
coefficient a t  the trailing edge can be expressed by 

where L’Hospital’s rule is applied. 
The strength of the square-root singularity a t  the leading edge is defined as 

1 
C(y) = 71imACp(c-x)i. 

2 0  x *C 

Substituting (15) into the above expression and integrating both sides with respect 
to x, the parameter C(y) is given by 

The magnitude of the sectional leading-edge thrust coefficient C,(y) can be calculated 
by 

C,(Y) = $C2(Y) (21) 

and thc total thrust coefficient a t  the leading edge can be computed by 

Integrating the pressure jump along the chord from the leading edge to the trailing 
edge yields the sectional latcral-force coefficients, 

where condition (13) is imposed. The total lateral-force coefficient C, = L / (  1/2pVLs0) 
can be obtained by integrating the sectional coefficient along the spanwise direction : 

where So = sc is the area of the submerged portion of the lifting surface. The 
accumulative lateral-force Coefficient C,(z) is defined as the total lateral-force 
coefficient from the leading edge to a longitudinal section a t  x, that  is 

C,(x) 
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The sectional yaw-moment coefficient with respect to  the mid-chord point is given 

by 

The total yaw-moment coefficient C ,  = M/(1 /2pVS0c)  can thus be obt'ained by 
integrating the above coefficient along the spanwise direction : 

(27) 
=-s^ 1 m ( O , y ) d Y - ~ ~ ~ n , ( r , y ) d ~ d ~ .  2 

US, 0 

The total yaw-moment coefficient with respect to the leading edge can be evaluated 
from the relation 

Ch, = +C', + c,. (28) 

The sectional near-field induced drag can be computed by 

Cp(y)  = C,(y) a- C,(y) 

and the total drag coefficient Cg) = D/( 1 /2p l jRS0)  is given by 

(30) 

Finally, since the potential function is odd in z ,  the free-surface profile on the 
pressure side of the plate can be expressed in tcrms of the limiting values of the 
pressure coeficient on the waterline : 

(W = CvLa-CCT. 

vr(x, z = 0) = $ 9 2 ,  AC,I,=,,, 
where 0 6 x < c. 

3. Numerical implementation 
Since the integral equation (1 1) cannot be solved analytically, our attention in this 

section is focused on its numerical solution by a panel method. The domain of the 
surface integration is discretized into a number of quadrilateral panels. The dipole 
density is assumed constant on each panel and the strength is to be determined by 
collocation. Thus, the continuous dipole distribution in (11) is approximated by a 
discrete one. If the numerical scheme is convergent, the difference between the 
numerical solution and the continuous limit can be made arbitrarily small with a 
sufficient number of panels. 

The effectiveness of this approach, in this case, depends on (i) a discretization 
scheme which takes the singularities at the edges of S,  into account ; (ii) the efficient 
algorithm for evaluating the kernel function throughout the centreplane. In  view of 
the similarity to the thin-wing problem, several schemes of discretization are 
modified from either the vortex-lattice method (VLM) (cf. Hough 1973) or the quasi- 
continuous method (QCM) by Lan (1974). The following scheme is selected for its 
superior convergence property, which is a generalization of the QCM. 

It has been demonstrated by Lan in a two-dimensional case that the downwash 
integral can be reduced to a finite sum through the Gauss-Chebyshev quadrature in 
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spite of the square-root singularity in the vortex density and the Cauchy singularity 
in the kernel. I n  the present study, this conclusion has been applied in both the 
chordwise and spanwise directions. Thus the collocation sections in both the 
longitudinal (chordwise) and vertical (spanwise) directions are selected a t  the zeros 
of the Chebyshev polynomial of the first kind. The panels are arranged such that each 
collocation point corresponds to  the centroid of a panel in the 6-coordinate, which is 
defined in (16). Based on the concept described above, the chordwise locations of the 
panel edges on S, are selected at 

xi=$ 1+cos (2i-l)- ( [ 
XNfl  = -$c(l-cos&), j 

where i = 1,2, . . . , N  and N is the number of longitudinal panel segments on S,. The 
collocation section on each panel segment is located a t  

xi - zc l+cos- where i = 1,2  ,..., N ,  
c - l (  3 (33) 

where the last collocation section is placed on the trailing edge. It must be noted that 
satisfying the body boundary condition on the trailing edge ensures that the wake 
leaves the trailing edge smoothly. The Kutta condition is fulfilled numerically by 
putting in a constant panel which overlaps the trailing edge. 

In the spanwise direction, a similar choice of the panel strip and collocation 
section is used. The locations of the edges of the panel strips are given by 

YM+1 = o, I 
where j = 1,2,  . . . ,M and M is the panel section in the vertical direction. The 
collocation sections are located a t  

yi" =is  l+cos- where j = 1,2,  ..., M .  ( M + l  (35) 

Note that the upper edge of the last panel strip coincides with the waterline, but no 
collocation section is introduced on the free surface. I n  view of the condition (13), the 
collocation sections at the leading edge and lower edge are also omitted. 

Since all unknowns are confined within S,,  no collocation point is introduced on 
the wake. To evaluate the contribution of the wake to the collocation points on S, 
numerically, we choose to  discretize the wake into panels for simplicity. A simple 
analysis shows that the contribution of a panel far downstream in the wake to a point 
upstream converges like 1/R3, where R is the distance from the panel to the point. 
Thus, the semi-infinite wake sheet may be truncated. The results of numerical 
experiments indicate that the solution changes less than 1 YO if a wake shect of five 
times the chord length is included in the computation. 

To determine the panel edges in the wake, the oscillatory features of thc kcrntl 
must be taken into account. Based on numerical studies of different components of 
the kernel function, a half-chord length of the wake immediately after the trailing 
edge is discretized such that the panels are symmetrical about the trailing edge. This 
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I Y‘ 

FIGURE 2 .  Panel and collocation-point arrangement on the submerged lifting surface and its wake 
based on the present scheme. (Here 2‘ = x / c  and y’ = y/s. The last collocation sertion in the 
chordwise direction on S ,  coincides with the trailing rdge.) 

arrangement may help to maintain a similar resolution in evaluating the contribution 
due to a panel on the wake when compared with that due to a panel on the lifting 
surface. Also it avoids the numerical difficulty due to an abrupt change in the size of 
adjacent panels. The size of the panel segments over the remainder of the wake is 
determined by a prespecified maximum aspect ratio. The scheme of discretization 
described above is illustrated in figure 2. 

If the wake is divided into N, segments longitudinally, the discrete form of the 
integral equation may be written as 

where Ir: = 1.2 ,  . . . , Nt and Nt = M x N is the total number of collocation points on the 
lifting surface, which is also equal to the total number of panels of S,. ASii is the 
domain of a generic panel Sji located at the j t h  panel strip and ith section. The 
normal of all panels is defined positive in the z-axis direction. 

Equation (36) can be written in a standard form for a linear system of equations : 

where A is an Nt x Nt influence coefficient matrix, m is the unknown Nt-vector 
containing the unknown dipole strength of each panel on the surface S,, and b is a 
known Nt-vector, which is determined by the boundary condition on the lifting 
surface. Since the panel size is non-uniform and the kernel function is not symmetric 
in p and q,  the resulting coefficient matrix A is a non-symmetric, full matrix. 

Every element of A is the superposition of integrals of the following canonical 

Am = b, (37) 



Potential $ow solution f o r  n ,yawed surfacp-piercing plate 30 1 

wherc subscripts k , j , i  arc defined in (36). Sincc the singularities contained in the 
function H are weaker, thc x-derivative and the surface integral in (38) have been 
interchanged. To construct A requires N," +NNwM2 evaluations of (38). Thus efficient 
quadrature for (38) is essential. 

The surfacc integral of the derivative of the Rankine singularities 1/r and l / r o  can 
be cvaluatcd using the algorithm developed by Newman (1986). For simplicity, the 
contribution from the remaining integral is evaluated by a one-point quadrature at 
the cdlocation point of each panel. To evaluate the second normal derivative of the 
double integral. derivatives are directly applied to the polynomial approximation for 
the integral itself derived by Newman (19874. Since function H satisfies Laplace 
equation, the second normal derivative of H can be replaced by the corresponding 
tangential dcrivatives on the centreplane. Thus single integral in (14) needs to be 
evaluated only on the centreplane, where the effective expansions described by 
Sewman (1987 b )  can be used. Following his approach, the single integral is replaced 
by the sum of the Dawson's integral and a pair of complementary Neumann 
expansions. The Corresponding analytic cxprcssions for the second normal deriva- 
tives of these integrals and the effective algorithms are described in Appendices 
A and B. The approach described above allows the evaluation of the integrals in (38) 
with uniform accuracy of five significant digits without recourse to numerical 
integration. 

From energy conservation, thc drag force acting on the lifting body may be 
evaluated at the Treftz plane. In general this is not practical because it requires 
knowledge of the complete wave system generated by the plate. However, in the 
limiting cases of zero or infinite Froude number, the integration associated with the 
waves vanishes. Thus, in these cases the drag must be equal t o  the rate of kinetic 
energy flux across a transverse plane at the far field. The normalized energy flux is 
given by 

Applying the divergence theorem to this integral and utilizing the Laplace equation, 
the induced drag evaluated at the far field may be written as 

where conditions (12) and (13) are also used in deriving the above expression. If the 
schcme is converging to the correct solution, the ratio of the near-field and far-field 
drag wefficients Cg)/Cb") should converge to 1.  

Sincc the computational time is dominated by the calculation of the matrix A for 
ATt > lo2, thc resulting linear system of algebraic equations is solved by a standard 
LU factorization routine using Gaussian elimination with partial pivoting. The 
convergence of the numerical solutions is assumed if the solutions obtained by 
systematically refining the discretization converge to the same limit for a given 
Froudc number. 

4. Numerical results and remarks 
The numerical scheme described in the preceding section is validatcd first at the 

zero-Froudc-numhcr limit by comparison with results in aerodynamic reports. For 
this purpose. a rectangular planforni with aspect ratio A = 1 (which will be referred 
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cb"/c; [?b"lC(,', Panels on S ,  CLla G l a  
5 x 5  2.4699 -0.5174 0.1531 0.9610 

l o x  10 2.4713 - 0. t i  1 74 0.1577 0.9901 
20 x 20 2.4714 -0.5174 0.1591 0.9993 

TABLE I .  Numerical experiments for convergence using Plate A a t  F, + 0, C":, is the moment 
with respect to  the leading edge 

('b"/C; (Yg)/(Ig) Method CLIa C.;,la 
Present 2.4713 -0.5174 0.1577 0.9901 

QCM 2.4707 -0.5173 0.1595 0.9972 
N =  10. M =  10 

S = 8. iM = 15 
VLM 2.5239 - 0  5334 0.1554 0.9747 

s = 6. M = 20 
SLR 2 4744 -0.51 82 0.1 so9 1.0101 

Wagner (1966) 2 4778 -0.51 80 0.1 6 1 9 1.0167 

TABLE 2. Aerodynamic characteristics of a rectangular wing of il = 2 a t  M ,  = 0 

Panels on S,, (lL/a ('rrla Cb"/a' C,la2 
6 x 6  1.7039 -0.2803 1.2956 0.4083 

12 x 12 1.6900 - 0.2541 1.2850 0.4050 
24 x 24 1.6550 - 0.2476 1.2575 0.3975 
48 x 48 1.6277 -0.2473 1.2327 0.3950 

TABLE 3. Numerical experiments for convergence using Plate B a t  F,, = 0.8 

to as Plate A) is selected. In this limiting case, the results for Plate A are comparable 
with those of a rectangular wing of A = 2 at zero Mach number ( M ,  = 0). 

The results of the convergencc chcck are tabulated in table 1. The convergence of 
solutions is indicated by the agreement of the near-field and far-field induced drags. 
In this case. the far-field drag coefficient is computed by (40). The present results 
for the overall aerodynamic characteristics of Platc A are compared to those from 
other methods including VLM. QCM and some continuous load methods (KLR, cf. 
Garner, Hewitt & Labrujere 1968; Wagner 1966) in the table 2 .  For the force 
distributions, comparisons between the present results and those of thin-wing theory 
show quantitative agreement, as shown in Xu (1990). 

The primary interest of the present work is the finite-Froude-number case. For 
convenience when comparing with the experiments, a rectangular flat plate of 
A = 0.5 (which will be referred to as Plate B) is selected for numerical computation. 
Since the solution is assumed linear in a. all the numerical results are normalized by 
the angle of attack. The global convergence check for the hydrodynamic coefficients is 
summarized in table 3. The condition number of the influence matrix A is found of 
the same order as its dimension. Since the matrix A is evaluated with an accuracy 
of five significant digits, the accuracy of the converged solution is estimated a t  about 
two significant digits. 

As shown in figure 3. the local convergence near the leading and lower edges is 
better than that near the waterline and trailing edge. This convergence property is 
also reflected in figures 4 and 5. In  figure 4. the fast convergence of parameter C(y) 
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FIGURE 3. Convergence check for the distributed force in ( a )  the  spanwise and 
( b )  chordwise directions using Plate B at F, = 0.8. 

clearly indicates the rapid convergence of the solution near the leading edge. The 
pressure a t  the trailing edge is convergent except near the intersection point with the 
free surface as shown in figure 5 ,  where the pressure coefficients are evaluated by (18). 
The results in figure 5 indicate that the solution near the intersection point does not 
satisfy the Kutta condition. For a linearized formulation, this is inevitable, as has 
been pointed out in $2. It is interesting to note that in the recent visualization test 
by Maniar, Newman & Xu (1990), a sharp transverse flow accompanying the free- 
surface jump a t  the intersection point, contrary to the Kutta condition, has been 
observed. The distributed drag and moment are also convergent, as shown by Xu 

After establishing the convergence of the algorithm, the hydrodynamic features 
for a yawed plate can be explored numerically. Since the longitudinal derivative of 
the potential function is regular in the 8-coordinate defined in (16), the pressure 
coefficient on the plate can be readily evaluated by (17) with a central-difference 
formula. The perspective view of the complete pressure distributions for Plate B a t  

(1990). 
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FIGURE 4. Distribution of the strength of the leading-rclge singularity at 
E:, = 0.8 for various disrretizations. 
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FIGURE 5 .  Pressure distribution at the trailing d g e  of 
Plate B (F, = 0.8) for various discretizations. 

various Froude numbers F, are shown in figure 6, where the domain S,  is normalized 
in the same manner as in figure 2 and the pressure coefficient is normalized by its 
value a t  the mid-span of the first collocation column next to the leading edge. In the 
two limiting cases of F, + 0 or 00, the pressure Kutta condition is satisfied everywhere 
at  the trailing edge. At F, = 0.3 and 0.8, the pressure coefficients are non-zero near 
the intersection point of the free surface and the trailing edge. When F, = 0.3, the 
free-surface displacement at the intersection point is small, hcncc the non-uniformity 
is less pronounced than that a t  F, = 0.8. In all cases, the non-uniformity is confined 
within a few panels adjacent to the intersection point, and as the number of panels 
increases the domain of the non-uniformity decreases. 

The free-surface profiles on the plate surface may be readily computed from (31), 
by extrapolating the pressure coefficient vertically to the waterline. The results are 
shown for various discretizations a t  F, = 0.3 and 0.8 in figure 7 (extrapolation a t  the 
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FIGURE 6. Iru’ormalized pressure distributions on the submerged portion of Plate B, a t  the indicated 
Froude numbers. (The intersections of the grid lines are the locations of the collocation points in 
thr numerical solution. The infinite pressure a t  the leading edge must be inferred by extrapolation 
since the first column of the collocation points is downstream of the leading edge.) 

leading cdgc is not accurate where the non-zero q-valucs must be disregarded). For 
F, = 0.3, the finer chordwise discretizations have been used to account for the shorter 
wavelength scale. 

The distributions of the hydrodynamic coefficients are presented in figures 8-1 1 for 
six selected Froude numbers, from zero to infinity. As shown in the single integral of 
(14), the intersection point of the leading edge and free surface is an essential 
singularity which must be excluded from the computation. For non-zero F,, the 
pressure on the free surface must be finite. Although i t  may not be imposed explicitly 
in the solution scheme, a valid solution must satisfy this condition. As shown in 
figure 8, the strength of the square-root singularity a t  the leading edge indeed 
diminishes towards the waterline. As F,+O, a double-body flow results. The 
intersection point is equivalent to the leading-edge point at mid-span of a thin wing 
with twice the aspect ratio. Thus the pressure becomes singular again. The parameter 
C(y), which corresponds to the cross-flow effect a t  the leading edge, reaches a 
maximum near the mid-draft, except when F, = 0. This prediction is in agreement 
with the results of visualization tests of van den Brug et al. (1971). The leading-edge 
separations were reported a t  half-draft below the still waterline starting as low as 



306 H .  Xu 
0.4 

[I] (28 x 9) panels I 0.3 

0.2 

0.1 %(", 2 = 0) 
ac 

0 

-0.1 

A (56 x 18) panels I -  (1 12 x 36) panels 

-0.2. ' 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

TE X LE 

0.8 

(6) 

0.27 1 

-0.80 ' 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

TE X LE 

FIGURE 7. Free-surface profiles on the surface of Plate B computed by (31); symbols denote 
different discretizations of S, with the indicated numbers of panel segments in the chordwise and 
spanwise directions: ( a )  F, = 0.3 and ( b )  F, = 0.8. 

a = tan-'0.05. For non-zero Froude numbers, there is no condition which specifies 
that the trailing vortex vanish on the waterline. Thus, a t  the waterline the slopes of 
the spanwise force distributions is non-zero in general. The slopes of the curves shown 
in figure 11 represent the variation of the integrated spanwise pressure force along 
the chord. The curve becomes oscillatory as F, decreases, which corresponds to the 
decrease of the transverse wavelength. All these curves have zero slopes approaching 
the trailing edge, which indicate that the pressure Kutta condition is fulfilled. 

In figures 12 and 13, the integrated lateral force and yaw moment are compared 
with the experimental data of van den Brug et al. (1971) and with the slender-body 
theory of Chapman (1976). The agreement between the present results and the 
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FIGURE 8. Spanwise distributions of the parameter C associated with the leading-edge 
singularity for Plate B at the indicated Froude numbers. 
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FIGURE 9. Spanwise distributions of the induced-drag coefficient for Plate B at 
various Froude numbers. Legend as figure 8. 

experimental data appears to be satisfactory. At very high F,, the two numerical 
results agree. For F,, < 0.8, the improved agreement from the present results 
compared with the slender-body approach is rather obvious. The analytical curves in 
figures 12, 13 and 14 should approach their zero-Froude-number limits with small 
oscillations corresponding to the wave forms on the two sides of the plate at  a 
particular Froude number. 

The limiting values as F,+O are C,/a = 1.4597, C,/a = 0.4865, C,/a2 = 0.7852, 
Cg’/a2 = 0.6745; and as F,+ a, C,/a = 0.6348, C,/u = 0.2599, C,/a2 = 0.3215, 
Cg) /a2  = 0.3 132. The corresponding limiting values from the slender-body approxi- 
mation by Chapman (1976) are C,/u = K ,  C,/a = ?jx for F,Ai+O, and C,/a = 
1.25, C,/a = 0.62 for F,Ai-+ co. The difference between the corresponding limiting 
values of the two approaches represents the effect of the finite aspect ratio. 
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FIGURE 1 1 .  Accumulative lateral-force coefficient in the chordwise direction of Plate B at 
various Froude numbers. Legend as figure 8. 

The total drag and leading-edge thrust coefficients are prerented in figure 14 as a 
function of Froude number. It is interesting to note that these two curves cross each 
other at approximately F, = 0.25. It is also noteworthy that at the zero-Froude- 
number limit the leading-edge thrust is greater than the wave-induced drag. These 
results predict that there is a favourable region of Froude number where the leading- 
edge thrust is large enough to  overcome the wave-induced drag. This favourable 
speed region (which is 0 < F, < 0.25 for a plate with A = 0.5) can be determined by 
performing the present computation for lower Froude numbers. 

However, as the Froude number decreases, the wavelength decreases in proportion 
to F i .  The computational time increases as a function of F i 2  for small Froude 
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FIGURE 13. Comparison of the yaw-moment coefficients (magnitude) of Plate B at various 
Froude numbers (the sources of data and legend are the same as in figure 12). 

1.0 

numbers. For instance, if the results for F, = 0.8 obtained by using 144 unknowns are 
considered acceptable, it takes 42 x 144 = 2304 unknowns to obtain a similar 
resolution for F, = 0.2. This estimate has been confirmed in the convergence chcck 
at F, = 0.2. The total number of panels on S, and S ,  is as high as O( lo5) for the latter 
case which takes 1.4 hours of CPU time on a CRAY Y-MP. It is for this reason that 
the computations were not extended to Froude numbers less than 0.2. The present 
computations were performed on a VAX/750 for Nt less than lo3, on a CRAY Y-MP 
for larger Nt. 

The present approach has been extended to  include planforms with arbitrary 
profiles a t  the leading and trailing edges. In those cases, the panel strips and 
collocation sections in the vertical direction should be determined first. Then, local 
chord lengths can be calculated at each section, and the longitudinal panel and 
collocation sections can be determined. For force calculations, the sectional leading- 
edge thrust in (21) must be multiplied by secA(y), where A(y) is the local leading- 

--. . . 
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Plate B at various Froude numbers. ( , 0 denote the present limiting values of C,/a2 and ICa)(/a2 
as F,, + 0, respectively.) 

Method C,la C$la c$'/c;* cp/cb" 
Present 2.7365 -3.0818 0.1137 1.0030 

QCM 2.7382 - 3.0844 0.1143 1.0054 

VLM 2.7944 -3.1775 0.1055 0.9275 

KLR 2.7373 - 3.1074 0.1201 1.0564 

PU'LR 2.7576 -3.1155 0.1138 0.9921 

TABLE 4. Aerodynamic characteristics of a Warren 12 planform of A = 2 .\/2 at M ,  = 0 

N = 6 , M =  16 

N = 5, M = 20 

N = 5 , M =  15 

M =  15 

M = 3 1  

edge sweep angle of a panel strip, whereas the upper and lower limits of the integrals 
in the formulae (22)-(27) can be modified in a straightforward fashion to compute the 
corresponding hydrodynamic coefficients. The results for the Warren 12 planform 
(aspect ratio A = 2 d2, leading-edge sweep angle A = 53.5O) are shown in table 4. 

5. Conclusions 
Within the context of linear potential theory, i t  has been shown that the steady 

problem of a yawed surface-piercing plate can be solved through a boundary- 
integral-equation formulation without restricting the aspect ratio or the Froude 
number. The convergence of the numerical scheme has been demonstrated both in 
the zero-Froude-number limit and for a finite Froude number. For a yawed surface- 
piercing plate of zero thickness, i t  is found that the discretization scheme is 
indispensable for the convergence of the solution. It is deduced that in a linearized 
formulation the pressure Kutta condition and the free-surface condition are not 
compatible. The numerical results show that the effects due to this incompatibility 
are confined locally a t  the intersection point of the free surface and the trailing edge. 
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Convergent results have been obtained for most of the hydrodynamic parameters 
of practical importance, which include the integrated lateral force, yaw moment and 
drag, and their spanwise distributions. Also included are the computed distributions 
of the strength of the leading-edge singularity. This parameter can be used to predict 
the occurrence of cavitation and separation of a bow region, and to guide the design 
of a ship or sailboat. 

Comparisons of the present results for force and moment with the experimental 
data of van den Brug et al. gave satisfactory agreement. I n  the zero-Froude-number 
limit, the present approach recovers thin-wing theory for an incompressible flow. The 
convergence rate of the present method is comparable with that of the QCM. At the 
infinite-Froude-number limit, the solution is also convergent. 

It is also found that for a surface-piercing plate there exists a favourable speed 
region where the wave-induced drag is less than the leading-edge thrust. For a plate 
of aspect ratio 0.5, i t  is F, < 0.25. In  an idealized case, if a sailboat is sailing within 
the favourable speed region, the additional thrust from the leading edge (its bow and 
keel profile) may be helpful in overcoming its frictional resistance. 

Since the free-surface jump phenomenon behind the trailing edge is excluded in a 
linearized lifting problem, only a nonlinear approach will be appropriate for studies 
of the jump phenomenon. 

The author sincerely thanks Professor J. N. Newman for his valuable guidance 
and encouragement during the course of this research. The helpful discussions 
with Professor P. D. Sclavounos and Professor J. E. Kerwin are also gratefully 
acknowledged. This study was financially supported by the Office of Naval 
Research, contract No. N00014-88-K-0057. The computations for large system of 
equations are performed a t  the Pittsburgh Supercomputer Center. 

Appendix A. Evaluation of the second normal derivative of the double 
integral on the centreplane 

The Cartesian coordinates system used by Newman (1987 a )  is defined as follows : 
the origin is located at the image of the source and the z-axis is in the direction of 
forward motion of the source, the y-axis is transverse, and the z-axis is vertical and 
positive downwards. These coordinates are normalized in terms of the wavenumber 
K = g/V. In  this coordinate system, the normalized Green function G is a function 
of (z,g,z) only. The computational form of the double integral can be defined 
explicitly by 

m e-kf+iklZl sec $+kptan q4 

D = g l i r n r 2  IT 6'0 -n/2 cos$dq510 dk k- cos2 q5 + is ' 

where the real part of the final complex solution is assumed. It has been shown by 
Newman that this integral can be replaced by the sum of a singular component D,, 
which is associated with the logarithmic singularity in the integral with respect to  k 
near the origin, and the regular remainder D,. The expansions for Ds and D,  are 
listed below. 

The singular component can be represented by the following expression (Newman 
1 9 8 7 ~ '  equation 21) : 

D, x - U, - zU3 + gV, - zU, ++[ - Z U ,  + g2( U3 + U,)  - z "u3I 

+ gzv, - E U ,  + zgv, + i[ - PU, - g3( v, + v,) - z3U4] 
+ t[z"yv, - ZzU,  + g%( u, + U , )  + Y"Z( u, + U,) - z z-U5+z2g~]+zyz&, 2 (A 2) 
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where 

v m =- cosrn-l 4 sin 4 logv d4. (A 4) 

These two families of integrals can be evaluated by the following relations: 

R + Z  uo = 2 log [4 
22 u =-2--  

R + Z  

(A 7) and 

where 

mUm + (m- 1 )  Urn-2 = L. 

L = 2im 1 x 1 x 3 ... (m-3)  -- 22-"[q1 c ( ~ ) ( - 1 ) ~ ( m - 2 k ) c o s ( ( m - 2 k ) a )  [ ~ J-**.  
2 x 4 ~ 6  ...( m) m k=O 

where symbol [(m-1)/2] in the upper limit of the summation denotes the integer 
portion of (m-l ) /2 ,  and (p) is the binomial coefficient, and spherical coordinates 
(R, 8,a)  were introduced such that 

z = Rsin8, z+iy = eiaRcos8 = peia. (A 10) 

The regular portion of the double integral can be approximated by a polynomial 
expansion 

16 16 16 

DR = C. c c c j k [ f ( ~ ) l i  [ -  1 + 4 e / q  [ 2 q ~ 1 2 * ,  ( A  1 1 )  
i=O j = O  k=O 

where the coefficients elk are given in the tables of Newman (1987a). The function 
f(R) in (A 1 1 )  is defined separately according to the radial distance to the origin by 
the following expressions : 

(2R-1 if O < R d l ;  

i(2R-5) if 1 d R d 4 ;  

3R-7)  if 4 Q R d  10; 
f (R)  = 

\1-20/R if l O d R < o o ;  

Thus, D = D, + DR where D, is included only for domain 0 < IT! < 1.  

Cartesian coordinates, (x, y, z )  defined in $ 2  of this paper can be expressed by 
The relationship between the normalized coordinates (x, y, Z) used in (A 1)  and the 

X = (Z-EJK, y = - ( Z f C ) K ,  z =  (y+Y/)K, (A 13) 

where ( c , ~ ,  5) is the location of a singular point. From this relation, we have 
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where K B =  G. Furthermore, the second q-derivative can be related to  the 
differentiations in the spherical coordinate (R,  8, a)  by 

also 

a a 2 1  - aq2 1 g=o = [ g 1 ~ + 9 ” + f +  a=o! 

a 2  a 

- 1  a = [ f 3 & ]  

aY g=o a=O 

where g ,  = l/R, g2 = -tan B/R2 and f ,  = 1/R cos 0. Hereinafter, all differentiations 
with respect to g are assumed to be evaluated at g = 0, and all differentiations with 
respect to a, 0, R will be evaluated for a = 0. The subscripts q = 0 and a = 0 will be 
omitted for simplicity. 

Differentiating both sides of ( A 2 )  twice with respect to y, and denoting each 
differentiation by a prime, we obtain 

Dg = - U;’-ZU~ + 2Vi- zU~ +t [  -2UL + 2( U3 + U,)  -3?L5] 

- EZU; + 2zv; + i[ - X”u; -2U;] + i(22V; - Z”u; + 2Z( u, + U,)  + 2 q  U, + U6) 
- z2zq + 2 2  v;] + 2zzv;. 

IJsing (A 5)-(A 9), in conjunction with (A 15) and (A lci), we have 

u“= 
R ( R + x ) ’  

and 

where 
k-0 

Also 

It is straightforward to verify that Um and 1/’; all vanish in this case. 
The relations (A 18)-(A 23) are valid for arbitrary values of the index m and 

coordinates (z,O, 23. Thus, the singular component D,“ can be evaluated to any order 
by using these formulae. 

Relation (A 15) is applied to evaluate the second normal derivative of the regular 
portion D, as expressed in (A 11) .  The results are listed here: 
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Therefore, the second-order normal derivative of the double integral D" = D," +Dk 
may be evaluated by (A 14) in conjunction with (A 17)-(A 26). The expansion for D," 
is truncated such that D" can be evaluated with an estimated accuracy of five 
significant figures everywhere in the plane y = 0. 

Appendix B. Evaluation of the second normal derivative of the single 
integral on the centreplane 

By using the same normalized Cartesian coordinates as introduced in Appendix A, 
the single integral can be expressed as the real part of the following expression 
(Newman 1987 b, equation 1) : 

/ 2  

S = 4iH( -x) dB see2 Bexp ( --see2 B+izsec B+ ild see2 Bsin B ) ,  (B 1) 

where H (  -z) is the unit step function which is equal to 1 when z is negative and 0 
elsewhere. 

Considering the real part of the single integral on the centreplane jj = 0, and 
making a substitution s = secB, i t  follows that 

S m 

epzs2 sin (SZ) ds 

= -8H(  -z)~(z, Z). 
Detailed discussion of the analytic properties of the single integral itself can be found 
in Newman (1987 b).  Since Z is non-negative by definition, and f (z, Z) is odd in Z, 
vanishing on z = 0 for Z >  0, it is sufficient to assume hereinafter that z > 0. The 
singular point z = 0, z = 0 must be excluded from the analysis. The centreplane is 
divided into three complementary subdomains and different expansions were 
developed in each domain. 

For domain 0 < Z < 10; 0 . 0 2 8 ~  < Z < 6, the function f (Z, Z) can be expressed by 
(Newman 1987 b, equation 13) : 

where J,(z) are Bessel functions of the first kind and F ( X )  is the Dawson's integral 
(cf. Abramowitz & Stegun 1964) with argument X = ;z&. The coefficients b, are 
defined by 

b, = +-"* ( - l )n  [K,(2Z)+K,+l(~Z)]-d,-dd,+,, 

where the functions K ,  are the modified Bessel functions of the second kind. The 
coefficients d, can be calculated by the following relations: 

do = 0, (B 5 )  

d, = l/%, (B 6) 

(B 7) d N + l + ~ d n - d n - l  4n = - 2 for n = 1,2 ,  ... . z 
More discussion of the evaluation of the above coefficients can be found in $3  of 
Newman (1987 b ) .  

Since the function f must satisfy the Laplace equation V2f = 0, it follows that 

f g g  = - ( f z z  +fz& (B 8) 
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Moreover, it is apparent that f (x, Z) in (B 2 )  satisfies the heat equation fz = fZz. Thus, 
(B 8)  may be rewritten as 

This formula can be applied to the expansions above to obtain the corresponding 
expansions for the second g-derivative of f .  The second- and fourth-order X- 
derivative of the Dawson’s integral in the first term of (B 3 )  can be computed on the 
basis of the expansions given in the Appendix of Newman (1987 b )  up to six-decimal 
accuracy. The summation part is 

f - -  YY = -(&+f----) 55 5555 ’ (B 9) 

with C,(z) = Jzn-3(z)-2J2,-1(z) +Jzn+S(z) ,  ( B  1 1 )  

where the coefficients b,  can be evaluated by the same algorithm as in ( B  4 ) .  The 
Bessel function J, can be evaluated by backward recursion. To avoid overflow in the 
evaluation of the coefficients b,  and underflow in the evaluation of the functions C ,  
for large values of n,  both functions are rescaled by a factor determined by the 
leading behaviour of C,, that is 

if n = O ;  ii ( $ ~ ) ~ ~ - ~ / ( 2 n - 3 ) !  for n >, 2 .  

A , =  if n =  1 ;  (B 12) 

Numerical experiments show that this scheme is convergent and effective in the 
domain 0 < x < 9 ;  0 . 1 2 9  < T < 6. The series is truncated when n exceeds the value 
of 9 . 4 - @ + ~ ~ / ~ .  If z < in this domain, the maximum n may be set equal to 3. 

When (4)2 < z/%’ < 0.12, the above algorithm must be computed by double 
precision to avoid cancellation errors in the summation. Also, the truncation of the 
series (B 10) may be made when n exceeds the value of 12. -Z+0.752/2,  with the 
maximum value n = 49. For each point on the centreplane (X, Z), the same maximum 
value n is used to  start the backward recursion for the functions C,. For < l op5 ,  the 
derivatives of the Dawson’s integral are the dominant part and the summation of the 
Neumann series is negligible. 

For smaller values of T / z ~ ,  the above series expansions suffer from cancellation 
errors and become inaccurate. A complementary asymptotic expansion was 
developed by Newman (1987 b )  for this region. The corresponding series for 
evaluating f(X, ??) is given by (Newman 1987 b ,  equation 18) : 

where Y, is the Bessel 
differentiation of the 
defined above. 

Substituting (B 13) 

function of the second kind, and the superscript (2n)  denotes 
same order with respect to 1. F ( X )  is the Dawson integral 

into (€3 9). the first two terms are associated with the second 
~ I .  

and fourth .%derivatives of the Dawson integral term which can be evaluated in the 
same way as for the derivatives of the first term in (B 9) to it yields the following 
result : 

11 F L Y  2% 



316 H .  Xu 

r 4  

2 

0 
X 

FIGURE 15. Partition of the computational domain for evaluating the second normal derivative of 
the single integral (cf. Appendix B). The equation numbers in each sub-domain correspond to  the 
expansions derived in Appendix B. The superscript (d) denotes the sub-domain where the 
rxpansion must be evaluated with double-precision (if the machine uses 4-byte single-precision 
numbers). Two parabolic lines are defined by z = 0 . 1 2 ~ ~  (dashed line) and z = (x/7)* (solid line). 

The terms in this series can be evaluated recursively by the same relation as relation 
(19) of Newman (19876). 

When (z,z) are far away from the origin: the steepest-descent expansion is more 
effective. The second y-derivative of function f (z, Z) (set, t = tan 0) is 

m 

f - -  YY = - eF(1+t2) sin [E( 1 +t2) : ]  ( t2  + t4)  dt. 
0 

(B 15) 

The minus sign and last factor in the integrand are the only modifications from the 
original function resulting from the differentiation. Hence, the steepest-descent 
algorithm (Newman 1987 b,  $5) is modified to compute fgg for the rest of the domain 
with an absolute accuracy of five significant digits (cf. Xu 1990). 

Finally, the matching boundaries between the different domains where the above 
expansions are used are determined to ensure that the second y-derivative of the 
single integral can be evaluated with a uniform accuracy of five significant figures 
over the centreplane. These partitions are indicated in figure 15. 
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